استفاده از نسبتهای مالی برای پیش بینی درماندگی مالی یا ورشکستگی شرکتها، همیشه مورد توجه دانشگاهیان و بنگاه های اقتصادی، به ویژه بانکها و سایر نهادهای مالی بوده است. پیش بینی به موقع می تواند تصمیم گیران را در یافتن راه حل و پیشگیری از درماندگی مالی، یاری نماید. همچنین، این مدلها کاربرد بسیار زیادی در رتبه بندی اعتباری و نحوه توزیع تسهیلات بانکی دارد. همواره سعی شده است تا دقت پیش بینی این مدلها با استفاده از روشهای پیشرفتهتر بهبود یابد. در این پژوهش که هدف اصلی آن بررسی کارایی استفاده از ماشین بردار پشتیبان (SVM) در پیش بینی درماندگی مالی شرکتها بوده است، نتایج مدل SVM در مقایسه با مدل آماری رگرسیون لجستیک (LR) بررسی شده است. یافته های تحقیق حاکی از آن است که در پیش بینی درماندگی مالی شرکتها، مدل SVM نسبت به مدل LR بطور معناداری، از دقت کلی بیشتری برخوردار است. بررسیهای انجام شده نشان میدهد که مدل SVM نسبت به مدل LR، نه تنها از دقت کلی بهتری برخوردار است، بلکه توانایی بالاتری نیز در تعمیم پذیری دارد.