Integer programming techniques for solving non-linear workforce planning models with learning |
Abstract:
In humans, the relationship between experience and productivity, also known as learning (possibly also including forgetting), is non-linear. As a result, prescriptive planning models that seek to manage workforce development through task assignment are difficult to solve. To overcome this challenge we adapt a reformulation technique from non-convex optimization to model non-linear functions with a discrete domain with sets of binary and continuous variables and linear constraints. Further, whereas the original applications of this technique yielded approximations, we show that in our context the resulting mixed integer program is equivalent to the original non-linear problem. As a second contribution, we introduce a capacity scaling algorithm that exploits the structure of the reformulation model and reduces computation time. We demonstrate the effectiveness of the techniques on task assignment models wherein employee learning is a function of task repetition.
|
Keywords: |
Production planning and scheduling , Human learning , Nonlinear programming |
Author(s): |
Mike Hewitt, Austin Chacosky, Scott E. Grasman, Barrett W. Thomas |
Source: |
European Journal of Operational Research > 2015 > 242 > 3 > 942-950 |
Subject: |
تحقیق در عملیات |
Category: |
مقالات ترجمه شده - دانلود ترجمه مقاله |
Release Date: |
2015 |
No of Pages: |
9 |
Price(Tomans): |
0 |
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
|
ترجمه این مقاله موجود است. مشاهده ترجمه مقاله
|