شما هنوز به سایت وارد نشده اید.
جمعه 02 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 33,546
بازدید دیروز: 28,942
بازدید کل: 157,634,918
کاربران عضو: 0
کاربران مهمان: 90
کاربران حاضر: 90
Optimally solving Markov decision processes with total expected discounted reward function: Linear programming revisited
Abstract:

We compare the computational performance of linear programming (LP) and the policy iteration algorithm (PIA) for solving discrete-time infinite-horizon Markov decision process (MDP) models with total expected discounted reward. We use randomly generated test problems as well as a real-life health-care problem to empirically show that, unlike previously reported, barrier methods for LP provide a viable tool for optimally solving such MDPs. The dimensions of comparison include transition probability matrix structure, state and action size, and the LP solution method.

Keywords: Markov decision process; MDP; Linear programming; Policy iteration; Total expected discounted reward; Treatment optimization
Author(s): Oguzhan Alagoza, , Mehmet U.S. Ayvaci, , Jeffrey T. Linderoth
Source: Computers & Industrial Engineering Volume 87, September 2015, Pages 311–316
Subject: تحقیق در عملیات
Category: مقالات ترجمه شده - دانلود ترجمه مقاله
Release Date: 2015
No of Pages: 6
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 ترجمه این مقاله موجود است.
مشاهده ترجمه مقاله