شما هنوز به سایت وارد نشده اید.
پنجشنبه 01 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 14,139
بازدید دیروز: 20,937
بازدید کل: 157,586,569
کاربران عضو: 0
کاربران مهمان: 71
کاربران حاضر: 71
The effect of context on misclassification costs in e-commerce applications
Abstract:

The performance of customer behavior models depends on both the predictive accuracy and the cost of incorrect predictions. Previous research showed that including context in the customer behavior models can improve the accuracy. However, improving accuracy does not necessarily mean that the misclassification cost decreases. In fact, different errors have different costs. Even if the number of incorrect predictions decreases, the number of errors associated with higher costs increase. The aim of this paper is to understand whether including context in a predictive model reduces the misclassification costs and in which conditions this happens. Experimental analyses were done by varying the market granularity, the dependent variable and the context granularity. The results show that context leads to a decrease in the misclassification cost when the unit of analysis is the single customer or the micro-segment. The exceptions may occur when the unit of analysis is a segment. These findings have significant implications for companies that have to decide whether to gather context and how to exploit it best when they build predictive models of the behavior of their customers

Keywords: Data mining Business intelligence Knowledge management applications Context Predictive model
Author(s): .
Source: Expert Systems with Applications 40 (2013) 5219–5227
Subject: تجارت الکترونیک
Category: مقاله مجله
Release Date: 2013
No of Pages: 9
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.