شما هنوز به سایت وارد نشده اید.
شنبه 03 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 14,569
بازدید دیروز: 52,631
بازدید کل: 157,668,572
کاربران عضو: 2
کاربران مهمان: 97
کاربران حاضر: 99
Segmenting customers in online stores based on factors that affect the customer’s intention to purchase
Abstract:

This study has proposed an approach that enables online stores to offer customized marketing by segmenting their customers based on customers’ psychographic data. Online stores can concentrate on more profitable activities by identifying customers’ value as they segment their customers into a few groups of customers with similar intentions to purchase. To segment online customers, based on previous research that explains the behavior of online customers regarding purchasing, the approach has employed the factors that affect the customers’ intention to purchase on the Web. We integrated the clustering results of SOM (self-organized map) and the k-means algorithm into a single model. Online stores can develop promotional marketing and offer personalized service for e-customers, who are more valuable and more promising, according to the market segments presented by our approach

Keywords: Customer segmentation Online store K-nearest neighbours method Clustering
Author(s): .
Source: Expert Systems with Applications 39 (2012) 2127–2131
Subject: تجارت الکترونیک
Category: مقاله مجله
Release Date: 2012
No of Pages: 5
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.