شما هنوز به سایت وارد نشده اید.
پنجشنبه 01 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 21,566
بازدید دیروز: 20,937
بازدید کل: 157,593,996
کاربران عضو: 2
کاربران مهمان: 90
کاربران حاضر: 92
Reinforcement learning approach to goal-regulation in a self-evolutionary manufacturing system
Abstract:

Up-to-date market dynamics has been forcing manufacturing systems to adapt quickly and continuously to the ever-changing environment. Self-evolution of manufacturing systems means a continuous process of adapting to the environment on the basis of autonomous goal-formation and goal-oriented dynamic organization. This paper proposes a goal-regulation mechanism that applies a reinforcement learning approach, which is a principal working mechanism for autonomous goal-formation. Individual goals are regulated by a neural network-based fuzzy inference system, namely, a goal-regulation network GRN) updated by a reinforcement signal from another neural network called goal-evaluation network GEN). The GEN approximates the compatibility of goals with current environmental situation. In this paper, a production planning problem is also examined by a simulation study in order to validate the proposed goal regulation mechanism

Keywords: Self-evolutionary manufacturing system Fractal organization Goal-regulation Reinforcement learning Agent Production planning
Author(s): .
Source: Expert Systems with Applications 39 (2012) 8736–8743
Subject: تولید
Category: مقاله مجله
Release Date: 2012
No of Pages: 8
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.