شما هنوز به سایت وارد نشده اید.
دوشنبه 03 دی 1403
ورود به سایت
آمار سایت
بازدید امروز: 19,521
بازدید دیروز: 19,661
بازدید کل: 158,510,010
کاربران عضو: 1
کاربران مهمان: 195
کاربران حاضر: 196
Predicting customer profitability during acquisition: Finding the optimal combination of data source and data mining technique
Abstract:

The customer acquisition process is generally a stressful undertaking for sales representatives. Luckily there are models that assist them in selecting the ‘right’ leads to pursue. Two factors play a role in this process: the probability of converting into a customer and the profitability once the lead is in fact a customer. This paper focuses on the latter. It makes two main contributions to the existing literature. Firstly, it investigates the predictive performance of two types of data: web data and commercially available data. The aim is to find out which of these two have the highest accuracy as input predictor for profitability and to research if they improve accuracy even more when combined. Secondly, the predictive performance of different data mining techniques is investigated. Results show that bagged decision trees are consistently higher in accuracy. Web data is better in predicting profitability than commercial data, but combining both is even better. The added value of commercial data is, although statistically significant, fairly limited

Keywords: Marketing analytics Predictive analytics Data source B2B Web mining Web crawling Bagging Profitability Customer acquisition External commercial data
Author(s): .
Source: Expert Systems with Applications 40 (2013) 2007–2012
Subject: بازاریابی
Category: مقاله مجله
Release Date: 2013
No of Pages: 6
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 

کرمانشاه گشت - اولین سامانه جامع گردشگری استان کرمانشاه