شما هنوز به سایت وارد نشده اید.
یکشنبه 04 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 7,496
بازدید دیروز: 26,897
بازدید کل: 157,688,396
کاربران عضو: 0
کاربران مهمان: 116
کاربران حاضر: 116
Modified genetic algorithms for solving fuzzy flow shop scheduling problems and their implementation with CUDA
Abstract:

In this paper we propose an improved algorithm to search optimal solutions to the flow shop scheduling problems with fuzzy processing times and fuzzy due dates. A longest common substring method is proposed to combine with the random key method. Numerical simulation shows that longest common substring method combined with rearranging mating method improves the search efficiency of genetic algorithm in this problem. For application in large-sized problems, we also enhance this modified algorithm by CUDA based parallel computation. Numerical experiments show that the performances of the CUDA program on GPU compare favorably to the traditional programs on CPU. Based on the modified algorithm invoking with CUDA scheme, we can search satisfied solutions to the fuzzy flow shop scheduling problems with high performance

Keywords: Flow shop scheduling problem Genetic algorithm Random key CUDA Fuzzy numbers
Author(s): .
Source: Expert Systems with Applications 39 (2012) 4999–5005
Subject: تولید
Category: مقاله مجله
Release Date: 2012
No of Pages: 7
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.