A large number of accounting studies have examined the occurrence of earnings management in various contexts. In most of these studies, the earnings management detection model is based on the linear regression model suggested by Jones (1991). A considerable problem with the Jones model is the requirement of long time series of financial statement data. An alternative to estimating the linear regression model coefficients with ordinary least squares (OLS) is to use fuzzy linear regression (FLR) instead. One of the main advantages with FLR described in the literature is its ability to handle small data sets. The purpose of this study is to compare the performance of the OLS-based Jones model with the performance of the FLR-based Jones model. The results show that the performance of both types of models decreases when the length of the time series decreases and that there is no significant difference in the estimated discretionary accruals between the models. The results also show that the FLR-based Jones model outperforms the OLS-based Jones model in detecting simulated earnings management when the estimation time series is short. Overall, the results show that the FLR-based Jones model is a feasiblealternative to the OLS-based Jones model, especially when the length of the estimation time series is restricted by data availability.