شما هنوز به سایت وارد نشده اید.
یکشنبه 16 دی 1403
ورود به سایت
آمار سایت
بازدید امروز: 2,212
بازدید دیروز: 20,029
بازدید کل: 158,820,471
کاربران عضو: 0
کاربران مهمان: 81
کاربران حاضر: 81
Forecasting trends of high-frequency KOSPI200 index data using learning classifiers
Abstract:

Recently many statistical learning techniques have been applied to the prediction of financial variables. The aim of this paper is to conduct a comprehensive study of the applications of statistical learning techniques to predict the trend of the return of high-frequency Korea composite stock price index (KOSPI) 200i ndex data using the information from the one-minute time series of spot index, futures index, and foreign exchange rate. Through experiments, it is observed that the spot index change is better predictable with high-frequency time series data and the futures index information significantly improves the prediction accuracy of the return trends of the spot index for high-frequency index data, while the information of exchange rate does not. Also, dimension reduction process before training helps to increase the accuracy and dramatically for some classifiers. In addition, the trained classifiers with which a virtual trading strategy is applied to, noticeable better profits can be achieved than just a buy-and-hold-like strategy

Keywords: Financial forecasting Statistical learning Binary classification Market lead-lag relationship High-frequency trading
Author(s): .
Source: Expert Systems with Applications 39 (2012) 11607–11615
Subject: مدیریت مالی
Category: مقاله مجله
Release Date: 2012
No of Pages: 9
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 

کرمانشاه گشت - اولین سامانه جامع گردشگری استان کرمانشاه