شما هنوز به سایت وارد نشده اید.
یکشنبه 02 دی 1403
ورود به سایت
آمار سایت
بازدید امروز: 10,563
بازدید دیروز: 19,661
بازدید کل: 158,501,052
کاربران عضو: 4
کاربران مهمان: 60
کاربران حاضر: 64
Forecasting foreign exchange rates using kernel methods
Abstract:

First, the all-important no free lunch theorems are introduced. Next, kernel methods, support vector machines (SVMs), preprocessing, model selection, feature selection, SVM software and the Fisher kernel are introduced and discussed. A hidden Markov model is trained on foreign exchange data to derive a Fisher kernel for an SVM, the DC algorithm and the Bayes point machine (BPM) are also used to learn the kernel on foreign exchange data. Further, the DC algorithm was used to learn the parameters of the hidden Markov model in the Fisher kernel, creating a hybrid algorithm. The mean net returns were positive for BPM; and BPM, the Fisher kernel, the DC algorithm and the hybrid algorithm were all improvements over a standard SVM in terms of both gross returns and net returns, but none achieved net returns as high as the genetic programming approach employed by Neely, Weller, and Dittmar and published in Neely, Weller, and Ulrich (2009). Two implementations of SVMs for Windows with semi-automated parameter selection are built

Keywords: Forecasting Foreign exchange Kernel methods
Author(s): .
Source: Expert Systems with Applications 39 (2012) 7652–7662
Subject: بازرگانی و تجارت
Category: مقاله مجله
Release Date: 2012
No of Pages: 11
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 

کرمانشاه گشت - اولین سامانه جامع گردشگری استان کرمانشاه