شما هنوز به سایت وارد نشده اید.
پنجشنبه 01 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 18,269
بازدید دیروز: 20,937
بازدید کل: 157,590,699
کاربران عضو: 1
کاربران مهمان: 59
کاربران حاضر: 60
Finding the needle: A risk-based ranking of product listings at online auction sites for non-delivery fraud prediction
Abstract:

Non-delivery fraud is a recurring problem at online auction sites: false sellers that list nonexistent products just to receive payments and afterwards disappear, possibly repeating the swindle with another identity. In our work we identified a set of publicly available features related to listings, sellers and product categories, and built a machine learning system for fraud prediction taking into account the high class imbalance of real data and the need to control the false positives rate due to commercial reasons. We tested the proposed system with data collected from a major Brazilian online auction site, obtaining good results on the identification of fraudsters before they strike, even when they had no previous historical information. We also evaluated the contribution of category-related features to fraud detection. Finally, we compared the learning algorithm used (boosted trees) with other state-of-the-art methods

Keywords: Fraud detection Non-delivery fraud Boosted trees E-commerce Online auction sites Machine learning Data collection
Author(s): .
Source: Expert Systems with Applications 40 (2013) 4805–4811
Subject: تجارت الکترونیک
Category: مقاله مجله
Release Date: 2013
No of Pages: 7
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.