شما هنوز به سایت وارد نشده اید.
دوشنبه 03 دی 1403
ورود به سایت
آمار سایت
بازدید امروز: 19,653
بازدید دیروز: 19,661
بازدید کل: 158,510,142
کاربران عضو: 0
کاربران مهمان: 77
کاربران حاضر: 77
Customer attrition in retailing: An application of Multivariate Adaptive Regression Splines
Abstract:

The profit resulting from customer relationship is essential to ensure companies viability, so an improvemen in customer retention is crucial for competitiveness. As such, companies have recognized th  importance of customer centered strategies and consequently customer relationship management CRM) is often at the core of their strategic plans. In this context, a priori knowledge about the risk of a given customer to mitigate or even end the relationship with the provider is valuable information that allows companies to take preventive measures to avoid defection. This paper proposes a model to predict partial defection, using two classification techniques: Logistic regression and Multivariate Adaptive Regression Splines (MARS). The main objective is to compare the performance of MARS with Logistic regression in modeling customer attrition. This paper considers the general form of Logistic regression and Logistic regression combined with a wrapper feature selection approach, such as stepwise approach. The empirical results showed that MARS performs better than Logistic regression when variable selection procedures are not used. However, MARS loses its superiority when Logistic regression is conducted with stepwise feature selection

Keywords: Marketing Customer relationship management Churn analysis Retailing Classification Logistic regression Multivariate Adaptive Regression Splines
Author(s): .
Source: Expert Systems with Applications 40 (2013) 6225–6232
Subject: بازاریابی
Category: مقاله مجله
Release Date: 2013
No of Pages: 8
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 

کرمانشاه گشت - اولین سامانه جامع گردشگری استان کرمانشاه