In this paper, continuous review inventory models in which a fraction of demand is backordered and the remaining fraction is lost during the stock out period are considered under fuzzy demands. In order to find the optimal decision under different situations, two decision methods are proposed. The first one is finding a minimum value of the expected annual total cost, and the second one is maximizing the credibility of an event that the total cost in the planning periods does not exceed a certain budget level. For the first decision method, an approach of ranking fuzzy numbers by their possibilistic mean value is adopted to achieve the optimal solution. For the second one, the technique of fuzzy simulation and differential evolution algorithms are integrated to design hybrid intelligent algorithms to solve the fuzzy models. Subsequently, the two decision models are compared and some advices about inventory cash flow management are given. Further, sensitivity analysis is conducted to give more general situations to illustrate the rationality of the management advices.