شما هنوز به سایت وارد نشده اید.
یکشنبه 16 دی 1403
ورود به سایت
آمار سایت
بازدید امروز: 2,140
بازدید دیروز: 20,029
بازدید کل: 158,820,399
کاربران عضو: 0
کاربران مهمان: 74
کاربران حاضر: 74
Comparing strategies for modeling students learning styles through reinforcement learning in adaptive and intelligent educational systems: An experimental analysis
Abstract:

A huge number of studies attest that learning is facilitated if teaching strategies are in accordance with students learning styles, making the learning process more effective and improving students performances. In this context, this paper presents an automatic, dynamic and probabilistic approach for modeling students learning styles based on reinforcement learning. Three different strategies for updating the student model are proposed and tested through experiments. The results obtained are analyzed, indicating the most effective strategy. Experiments have shown that our approach is able to automatically detect and precisely adjust students’ learning styles, based on the non-deterministic and non-stationary aspects of learning styles. Because of the probabilistic and dynamic aspects enclosed in automatic detection of learning styles, our approach gradually and constantly adjusts the student model, taking into account students’ performances, obtaining a fine-tuned student model

Keywords: Student modeling Learning styles Adaptive and intelligent educational systems Reinforcement learning Student evaluation e-Learning
Author(s): .
Source: Expert Systems with Applications 40 (2013) 2092–2101
Subject: مدیریت آموزشی
Category: مقاله مجله
Release Date: 2013
No of Pages: 10
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 

کرمانشاه گشت - اولین سامانه جامع گردشگری استان کرمانشاه