شما هنوز به سایت وارد نشده اید.
شنبه 03 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 6,819
بازدید دیروز: 52,631
بازدید کل: 157,660,822
کاربران عضو: 0
کاربران مهمان: 119
کاربران حاضر: 119
Clustering and visualization of bankruptcy trajectory using self-organizing map
Abstract:

Bankruptcy trajectory reflects the dynamic changes of financial situation of companies, and hence make possible to keep track of the evolution of companies and recognize the important trajectory patterns. This study aims at a compact visualization of the complex temporal behaviors in financial statements. We use self-organizing map (SOM) to analyze and visualize the financial situation of companies over several years through a two-step clustering process. Initially, the bankruptcy risk is characterized by a feature self-organizing map (FSOM), and therefore the temporal sequence is converted to the trajectory vector projected on the map. Afterwards, the trajectory self-organizing map (TSOM) clusters the trajectory vectors to a number of trajectory patterns. The proposed approach is applied to a large database of French companies spanning over four years. The experimental results demonstrate the promising functionality of SOM for bankruptcy trajectory clustering and visualization. From the viewpoint of decision support, the method might give experts insight into the patterns of bankrupt and healthy company development

Keywords: Bankruptcy risk Trajectory pattern Self-organizing map Visual clustering
Author(s): .
Source: Expert Systems with Applications 40 (2013) 385–393
Subject: مدیریت مالی
Category: مقاله مجله
Release Date: 2013
No of Pages: 9
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.