شما هنوز به سایت وارد نشده اید.
جمعه 02 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 33,991
بازدید دیروز: 28,942
بازدید کل: 157,635,363
کاربران عضو: 1
کاربران مهمان: 88
کاربران حاضر: 89
Audience targeting by B-to-B advertisement classification: A neural network approach
Abstract:

As marketing communications proliferate, the ability to target the right audience for a message is of everincreasing importance. Audience targeting practices for mass media, both in research and in industry, have tended to emphasize demographics, behavior, and other characteristics of customer groups as the bases for matching communications to audiences. These approaches overlook the opportunity to leverage the nature of advertising content, by automatically matching advertisement content to appropriate media channels and target audience. We model the semantic and sentiment content of advertisements with 103 variables. Based on these variables, a neural network classifier is used to assign advertisements to groups that represent different media channels. In its ability to classify unseen advertisements, the model outperforms the classification result generated by a random model, by 100–300%. This method also enables us to identify and describe divergent advertisement characteristics, by industry

Keywords: Media planning Advertising Targeting Neural networks
Author(s): .
Source: Expert Systems with Applications 40 (2013) 2777–2791
Subject: بازاریابی
Category: مقاله مجله
Release Date: 2013
No of Pages: 15
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.