شما هنوز به سایت وارد نشده اید.
شنبه 03 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 7,034
بازدید دیروز: 52,631
بازدید کل: 157,661,037
کاربران عضو: 0
کاربران مهمان: 91
کاربران حاضر: 91
A sparse Gaussian process regression model for tourism demand forecasting in Hong Kong
Abstract:

In recent years, Gaussian process (GP) models have been popularly studied to solve hard machine learning problems. The models are important due to their flexible non-parametric modeling abilities using Mercer kernels and the Bayesian framework for probabilistic inference. In this paper, we propose a sparse GP regression (GPR) model for tourism demand forecasting in Hong Kong. The sparsification procedure of the GPR model not only decreases the computational complexity but also improves the generalization ability. We experiment the proposed model with monthly demand data that are relevant to Hong Kong’s tourism industry, and compare the performance of the sparse GPR model with those of various kernelbased models to show its effectiveness. The proposed sparse GPR model shows that its forecasting capability outperforms those of the ARMA model and the two state-of-the-art SVM model

Keywords: Sparse Gaussian process Support vector machine Tourism demand forecasting Kernel machines
Author(s): .
Source: Expert Systems with Applications 39 (2012) 4769–4774
Subject: مدیریت جهانگردی
Category: مقاله مجله
Release Date: 2012
No of Pages: 6
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.