شما هنوز به سایت وارد نشده اید.
پنجشنبه 01 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 19,576
بازدید دیروز: 20,937
بازدید کل: 157,592,006
کاربران عضو: 1
کاربران مهمان: 126
کاربران حاضر: 127
Analysis of traffic accident severity using Decision Rules via Decision Trees
Abstract:

A Decision Tree (DT) is a potential method for studying traffic accident severity. One of its main advantages is that Decision Rules (DRs) can be extracted from its structure. And these DRs can be used to identify safety problems and establish certain measures of performance. However, when only one DT is used, rule extraction is limited to the structure of that DT and some important relationships between variables cannot be extracted. This paper presents a more effective method for extracting rules from DTs. The method’s effectiveness when applied to a particular traffic accident dataset is shown. Specifically, our study focuses on traffic accident data from rural roads in Granada (Spain) from 2003 to 2009 (both included). The results show that we can obtain more than 70 relevant rules from our data using the new method, whereas with only one DT we would have extracted only five relevant rules from the same dataset

Keywords: Traffic accident Severity Road safety Decision Trees Decision Rules
Author(s): .
Source: Expert Systems with Applications 40 (2013) 6047–6054
Subject: تصمیم گیری
Category: مقاله مجله
Release Date: 2013
No of Pages: 8
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.