شما هنوز به سایت وارد نشده اید.
جمعه 21 دی 1403
ورود به سایت
آمار سایت
بازدید امروز: 13,076
بازدید دیروز: 30,405
بازدید کل: 158,982,105
کاربران عضو: 0
کاربران مهمان: 70
کاربران حاضر: 70
A hybrid recommendation approach for a tourism system
Abstract:

Many current e-commerce systems provide personalization when their content is shown to users. In this sense, recommender systems make personalized suggestions and provide information of items available in the system. Nowadays, there is a vast amount of methods, including data mining techniques that can be employed for personalization in recommender systems. However, these methods are still quite vulnerable to some limitations and shortcomings related to recommender environment. In order to deal with some of them, in this work we implement a recommendation methodology in a recommender system fo tourism, where classification based on association is applied. Classification based on association methods, also named associative classification methods, consist of an alternative data mining technique, which combines concepts from classification and association in order to allow association rules to be employed in a prediction context. The proposed methodology was evaluated in some case studies, where we could verify that it is able to shorten limitations presented in recommender systems and to enhance recommendation quality

Keywords: Recommender systems Associative classification Fuzzy logic
Author(s): .
Source: Expert Systems with Applications 40 (2013) 3532–3550
Subject: مدیریت جهانگردی
Category: مقاله مجله
Release Date: 2013
No of Pages: 19
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 

کرمانشاه گشت - اولین سامانه جامع گردشگری استان کرمانشاه