A data mining approach considering missing values for the optimization of semiconductor-manufacturing processes |
Abstract:
Due to the rapid development of information technologies, abundant data have become readily available. Data mining techniques have been used for process optimization in many manufacturing processes in automotive, LCD, semiconductor, and steel production, among others. However, a large amount of missing values occurs in the data set due to several causes (e.g., data discarded by gross measurement errors, measurement machine breakdown, routine maintenance, sampling inspection, and sensor failure), which frequently complicate the application of data mining to the data set. This study proposes a new procedure for optimizing processes called missing values-Patient Rule Induction Method (m-PRIM), which handles the missing-values problem systematically and yields considerable process improvement, even if a significant portion of the data set has missing values. A case study in a semiconductor manufacturing process is conducted to illustrate the proposed procedure
|
Keywords: |
Data mining approach Missing values Patient Rule Induction Method Process optimization |
Author(s): |
. |
Source: |
Expert Systems with Applications 39 (2012) 2590–2596 |
Subject: |
تولید |
Category: |
مقاله مجله |
Release Date: |
2012 |
No of Pages: |
7 |
Price(Tomans): |
0 |
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
|
|