شما هنوز به سایت وارد نشده اید.
پنجشنبه 04 بهمن 1403
ورود به سایت
آمار سایت
بازدید امروز: 3,804
بازدید دیروز: 27,055
بازدید کل: 159,286,810
کاربران عضو: 1
کاربران مهمان: 137
کاربران حاضر: 138
A Bayesian regularized artificial neural network for stock market forecasting
Abstract:

In this paper a Bayesian regularized artificial neural network is proposed as a novel method to forecast financial market behavior. Daily market prices and financial technical indicators are utilized as inputs to predict the one day future closing price of individual stocks. The prediction of stock price movement is generally considered to be a challenging and important task for financial time series analysis. The accurate prediction of stock price movements could play an important role in helping investors improve stock returns. The complexity in predicting these trends lies in the inherent noise and volatility in daily stock price movement. The Bayesian regularized network assigns a probabilistic nature to the network weights, following the network to automatically and optimally penalize excessively complex models. The proposed technique reduces the potential for overfitting and overtraining, improving the prediction quality and generalization of the network. Experiments were performed with Microsoft Corp. and Goldman Sachs Group Inc. stock to determine the effectiveness of the model. The results indicate that the proposed model performs as well as the more advanced models without the need for preprocessing of data, seasonality testing, or cycle analysis

Keywords: Bayesian regularization Neural network Stock prediction Overfitting
Author(s): .
Source: Expert Systems with Applications 40 (2013) 5501–5506
Subject: مدیریت مالی
Category: مقالات ترجمه شده - دانلود ترجمه مقاله
Release Date: 2013
No of Pages: 6
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 ترجمه این مقاله موجود است.
مشاهده ترجمه مقاله

کرمانشاه گشت - اولین سامانه جامع گردشگری استان کرمانشاه