شما هنوز به سایت وارد نشده اید.
جمعه 02 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 34,339
بازدید دیروز: 28,942
بازدید کل: 157,635,711
کاربران عضو: 1
کاربران مهمان: 60
کاربران حاضر: 61
Comparing alternative classifiers for database marketing: The case of imbalanced datasets
Abstract:

There are various algorithms used for binary classification where the cases are classified into one of two non-overlapping classes. The area under the receiver operating characteristic (ROC) curve is the most widely used metric to evaluate the performance of alternative binary classifiers. In this study, for the application domains where the high degree of imbalance is the main characteristic and the identification of the minority class is more important, we show that hit rate based measures are more correct to assess model performances and that they should be measured on out of time samples. We also try to identify the optimum composition of the training set. Logistic regression, neural network and CHAID algorithms are implemented for a real marketing problem of a bank and the performances are compared

Keywords: Database marketing Imbalance datasets Propensity modeling Performance measures
Author(s): .
Source: Expert Systems with Applications 39 (2012) 48–53
Subject: بازاریابی
Category: مقاله مجله
Release Date: 2012
No of Pages: 6
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.