شما هنوز به سایت وارد نشده اید.
شنبه 22 دی 1403
ورود به سایت
آمار سایت
بازدید امروز: 1,722
بازدید دیروز: 16,605
بازدید کل: 158,987,356
کاربران عضو: 0
کاربران مهمان: 51
کاربران حاضر: 51
A two-staged SEM-neural network approach for understanding and predicting the determinants of m-commerce adoption
Abstract:

The advancement in wireless and mobile technologies has presented tremendous business opportunity for mobile-commerce (m-commerce). This research aims to examine the factors that influence consumers’ m-commerce adoption intention. Variables such as perceived usefulness, perceived ease of use, perceived enjoyment, trust, cost, network influence, and variety of services were used to examine the adoption intentions of consumers. Data was collected from 376 m-commerce users. A multi-analytic approach was proposed whereby the research model was tested using structural equation modeling SEM), and the results from SEM were used as inputs for a neural network model to predict m-commerce adoption. The result showed that perceived usefulness, perceived enjoyment, trust, cost, network influence, and trust have significant influence on consumers’ m-commerce adoption intentions. However, the neural network model developed in this research showed that the best predictors of m-commerce adoption are network influence, trust, perceived usefulness, variety of service, and perceived enjoyment. This research proposed an innovative new approach to understand m-commerce adoption, and the result for this study will be useful for telecommunication and m-commerce companies in formulating strategies to attract more consumers

Keywords: m-Commerce Technology adoption SEM Neural network Multi-analytic data analysis
Author(s): .
Source: Expert Systems with Applications 40 (2013) 1240–1247
Subject: بازرگانی و تجارت
Category: مقاله مجله
Release Date: 2013
No of Pages: 8
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 

کرمانشاه گشت - اولین سامانه جامع گردشگری استان کرمانشاه