شما هنوز به سایت وارد نشده اید.
شنبه 03 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 24,821
بازدید دیروز: 52,631
بازدید کل: 157,678,824
کاربران عضو: 0
کاربران مهمان: 84
کاربران حاضر: 84
Exploring the behaviour of base classifiers in credit scoring ensembles
Abstract:

Many techniques have been proposed for credit risk assessment, from statistical models to artificial intelligence methods. During the last few years, different approaches to classifier ensembles have successfully been applied to credit scoring problems, demonstrating to be more accurate than single prediction models. However, it is still a question what base classifiers should be employed in each ensemble in order to achieve the highest performance. Accordingly, the present paper evaluates the performance of seven individual prediction techniques when used as members of five different ensemble methods. The ultimate aim of this study is to suggest appropriate classifiers for each ensemble approach in the context of credit scoring. The experimental results and statistical tests show that the C4.5 decision tree constitutes the best solution for most ensemble methods, closely followed by the multilayer perceptron neural network and logistic regression, whereas the nearest neighbour and the naive Bayes classifiers appear to be significantly the worst

Keywords: Finance Credit scoring Classifier ensemble
Author(s): .
Source: Expert Systems with Applications 39 (2012) 10244–10250
Subject: مدیریت مالی
Category: مقاله مجله
Release Date: 2012
No of Pages: 7
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.