The consistency measure is a vital basis for group decision making (GDM) based on fuzzy preference relations, and includes two subproblems: individual consistency and consensus consistency. This paper proposes linear optimization models for solving some issues on consistency of fuzzy preference relations, such as individual consistency construction, consensus model and management of incomplete fuzzy preference relations. Our proposal optimally preserves original preference information in constructing individual consistency and reaching consensus (in Manhattan distance sense), and maximizes the consistency level of fuzzy preference relations in calculating the missing values of incomplete fuzzy preference relations. Linear optimization models can be solved in very little computational time using readily available softwares. Therefore, the results in this paper are also of simplicity and convenience for the application of consistent fuzzy preference relations in GDM problems