شما هنوز به سایت وارد نشده اید.
سه شنبه 18 دی 1403
ورود به سایت
آمار سایت
بازدید امروز: 1,766
بازدید دیروز: 24,308
بازدید کل: 158,866,204
کاربران عضو: 0
کاربران مهمان: 175
کاربران حاضر: 175
A multi-industry bankruptcy prediction model using back-propagation neural network and multivariate discriminant analysis
Abstract:

The accurate prediction of corporate bankruptcy for the firms in different industries is of a great concern to investors and creditors, as the reduction of creditors’ risk and a considerable amount of saving for an industry economy can be possible. This paper presents a multi-industry investigation of the bankruptcy of Korean companies using back-propagation neural network (BNN). The industries include construction, retail, and manufacturing. The study intends to suggest the industry specific model to predict bankruptcy by selecting appropriate independent variables. The prediction accuracy of BNN is compared to that of multivariate discriminant analysis. The results indicate that prediction using industry sample outperforms the prediction using the entire sample which is not classified according to industry by 6–12%. The prediction accuracy of bankruptcy using BNN is greater than that of MDA. The study suggests insights for the practical industry model for bankruptcy prediction

Keywords: Bankruptcy prediction Back-propagation neural network (BNN) Multivariate discriminate analysis (MDA) A multi-industry investigation
Author(s): .
Source: Expert Systems with Applications 40 (2013) 2941–2946
Subject: مدیریت مالی
Category: مقاله مجله
Release Date: 2013
No of Pages: 6
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 

کرمانشاه گشت - اولین سامانه جامع گردشگری استان کرمانشاه