A better understanding of what motivates humans to perform certain actions is relevant for a range of research challenges including generating action sequences that implement goals planning). A first step in this direction is the task of acquiring knowledge about human goals. In this work, we investigate whether Search Query Logs are a viable source for extracting expressions of human goals. For this purpose, we devise an algorithm that automatically identifies queries containing explicit goals such as find home to rent in Florida. Evaluation results of our algorithm achieve useful precision/recall values. We apply the classification algorithm to two large Search Query Logs, recorded by AOL and Microsoft Research in 2006, and obtain a set of 110,000 queries containing explicit goals. To study the nature of human goals in Search Query Logs, we conduct qualitative, quantitative and comparative analyses. Our findings suggest that Search Query Logs (i) represent a viable source for extracting human goals, (ii) contain a great variety of human goals and iii) contain human goals that can be employed to complement existing commonsense knowledge bases. Finally, we illustrate the potential of goal knowledge for addressing following application scenario: to refine and extend commonsense knowledge with human goals from Search Query Logs. This work is relevant for (i) knowledge engineers interested in acquiring human goals from textual corpora and constructing knowledge bases of human goals (ii) researchers interested in studying characteristics of human goals in Search Query Logs.