شما هنوز به سایت وارد نشده اید.
یکشنبه 23 دی 1403
ورود به سایت
آمار سایت
بازدید امروز: 11,820
بازدید دیروز: 16,958
بازدید کل: 159,014,412
کاربران عضو: 2
کاربران مهمان: 83
کاربران حاضر: 85
Hybrid particle swarm optimization with mutation for optimizing industrial product lines: An application to a mixed solution space considering both discrete and continuous design variables
Abstract:

This article presents an artificial intelligence-based solution to the problem of product line optimization. More specifically, we apply a new hybrid particle swarm optimization (PSO) approach to design an optimal industrial product line. PSO is a biologically-inspired optimization framework derived from natural intelligence that exploits simple analogues of collective behavior found in nature, such as bird flocking and fish schooling. All existing product line optimization algorithms in the literature have been so far applied to consumer markets and product attributes that range across some discrete values. Our hybrid PSO algorithmsearches for an optimal product line in a large design space which consists of both discrete and continuous design variables. The incorporation of a mutation operator to the standard PSO algorithm significantly improves its performance and enables our mechanism to outperform the state of the art Genetic Algorithm in a simulated study with artificial datasets pertaining to industrial cranes. The proposed approach deals with the problem of handling variables that can take any value froma continuous range and utilizes design variables associatedwith both product attributes and value-added services. The application of the proposed artificial intelligence framework yields important implications for strategic customer relationship and production management in business-to-business markets

Keywords: Product line design Business-to-business marketing Particle swarm optimization Hybridization Mutation operator
Author(s): .
Source: Industrial Marketing Management 42 (2013) 496–506
Subject: بازاریابی
Category: مقاله مجله
Release Date: 2013
No of Pages: 11
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 

کرمانشاه گشت - اولین سامانه جامع گردشگری استان کرمانشاه