شما هنوز به سایت وارد نشده اید.
جمعه 02 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 23,537
بازدید دیروز: 28,942
بازدید کل: 157,624,909
کاربران عضو: 0
کاربران مهمان: 574
کاربران حاضر: 574
Machine learning the harness track: Crowdsourcing and varying race history
Abstract:

Racing prediction schemes have been with mankind a long time. From following crowd wisdom and betting on favorites tomathematicalmethods like the Dr. Z System, we introduce a different class of prediction system, the S&C Racing system that derives from machine learning. We demonstrate the S&C Racing system using Support Vector Regression (SVR) to predict finishes and analyzed it on fifteen months of harness racing data from Northfield Park, Ohio. We found that within the domain of harness racing, our system outperforms crowds and Dr. Z Bettors in returns per dollar wagered on seven of the most frequently used wagers: Win $1.08 return, Place $2.30, Show $2.55, Exacta $19.24, Quiniela $18.93, Trifecta $3.56 and Trifecta Box $21.05. Furthermore, we also analyzed a range of race histories and found that a four race historymaximized system accuracy and payout. The implications of this work suggest that an informational inequality exists within the harness racing market that was exploited by S&C Racing.While interesting, the implications of machine learning in this domain show promise

Keywords: Business intelligence Data mining Support Vector Regression Harness racing S&C Racing system Crowdsourcing Dr. Z System
Author(s): .
Source: Decision Support Systems 54 (2013) 1370–1379
Subject: فناوری اطلاعات
Category: مقاله مجله
Release Date: 2013
No of Pages: 10
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.