شما هنوز به سایت وارد نشده اید.
یکشنبه 16 دی 1403
ورود به سایت
آمار سایت
بازدید امروز: 2,200
بازدید دیروز: 20,029
بازدید کل: 158,820,459
کاربران عضو: 0
کاربران مهمان: 69
کاربران حاضر: 69
A cost-sensitive technique for positive-example learning supporting content-based product recommendations in B-to-C e-commerce
Abstract:

Existing supervised learning techniques are able to support product recommendations in business-toconsumer e-commerce but become ineffective in scenarios characterized by single-class learning, such as a training sample that consists of some examples pertaining to only one outcome class (positive or negative). To address such challenges, we develop a COst-sensitive Learning-based Positive Example Learning (COLPEL) technique, which constructs an automated classifier from a training sample comprised of positive examples and a much larger number of unlabeled examples. The proposed technique incorporates cost-proportionate rejection sampling to derive, from unlabeled examples, a subset that is likely to feature negative examples in the training sample. Our technique follows a committee machine approach and thereby constructs a set of classifiers that make joint product recommendations while mitigating the potential biases common to the use of a single classifier. We evaluate the proposed method with customers' book ratings collected from Amazon.com and include two prevalent techniques for benchmark purposes; namely, positive naïve Bayes and positive example-based learning. According to our results, the proposed COLPEL technique outperforms both benchmarks, as measured by accuracy and positive and negative F1 scores

Keywords: Content-based recommender systems Single-class learning Cost-sensitive learning Positive example-based learning Committee machine
Author(s): .
Source: Decision Support Systems 53 (2012) 245–256
Subject: تجارت الکترونیک
Category: مقاله مجله
Release Date: 2012
No of Pages: 12
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 

کرمانشاه گشت - اولین سامانه جامع گردشگری استان کرمانشاه