This paper presents a constrained Model Predictive Control (MPC) strategy enriched with soft-control techniques as neural networks and fuzzy logic, to incorporate self-tuning capabilities and reliability aspects for the management of drinking water networks (DWNs). The control system architecture consists in a multilayer controller with three hierarchical layers: learning and planning layer, supervision and adaptation layer, and feedback control layer. Results of applying the proposed approach to the Barcelona DWN show that the quasi-explicit nature of the proposed adaptive predictive controller leads to improve the computational time, especially when the complexity of the problem structure can vary while tuning the receding horizons.