شما هنوز به سایت وارد نشده اید.
دوشنبه 24 دی 1403
ورود به سایت
آمار سایت
بازدید امروز: 31,715
بازدید دیروز: 23,302
بازدید کل: 159,057,609
کاربران عضو: 0
کاربران مهمان: 530
کاربران حاضر: 530
Predictions of bridge scour: Application of a feed-forward neural network with an adaptive activation function
Abstract:

In this study, a new procedure to determine the optimum activation function for a neural network is proposed. Unlike previous methods of optimising activation functions, the proposed approach regards selection of the most suitable activation function as a discrete optimisation problem, which involves generating various combinations of function then evaluating their performance as activation functions in a neural network, returning the function or combination of functions which yields best result as the optimum. The efficacy of the proposed optimisation method is compared with conventional approaches using the data generated from several synthetic functions. Numerical results indicate that the network produced using the proposed method achieves a better accuracy with a smaller network size, compared to other approaches. Bridge scour problem is used to further demonstrate the performance of the proposed algorithm. Based on the training and validation results, a better estimation of both equilibrium and time dependent scour depth is produced by the neural network developed using the proposed optimisation method, compared to networks with a priori chosen activation functions. Furthermore, the perfor- mance of the proposed model is compared with predictions of empirical methods, with the former making more accurate predictions

Keywords: Adaptive activationfunction ANN model Optimisation ofNNmodels Bridge scour
Author(s): .
Source: Engineering Applications of Artificial Intelligence 26 (2013) 1540–1549
Subject: تصمیم گیری
Category: مقاله مجله
Release Date: 2013
No of Pages: 10
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 

کرمانشاه گشت - اولین سامانه جامع گردشگری استان کرمانشاه