شما هنوز به سایت وارد نشده اید.
یکشنبه 02 دی 1403
ورود به سایت
آمار سایت
بازدید امروز: 14,838
بازدید دیروز: 19,661
بازدید کل: 158,505,327
کاربران عضو: 1
کاربران مهمان: 106
کاربران حاضر: 107
High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform
Abstract:

The re-entrant flow shop scheduling problem (RFSP) is regarded as a NP-hard problem and attracted the attention of both researchers and industry. Current approach attempts to minimize the makespan of RFSP without considering the interdependency between the resource constraints and the re-entrant probability. This paper proposed Multi-level genetic algorithm (GA) by including the co-related re- entrant possibility and production mode in multi-level chromosome encoding. Repair operator is incorporated in the Multi-level genetic algorithm so as to revise the infeasible solution by resolving the resource conflict. With the objective of minimizing the makespan, Multi-level genetic algorithm (GA) is proposed and ANOVA is used to fine tune the parameter setting of GA. The experiment shows that the proposed approach is more effective to find the near-optimal schedule than the simulated annealing algorithm for both small-size problem and large-size problem.

Keywords: Resource-constrained Re-entrant Genetic algorithm Multi-level encoding
Author(s): .
Source: Engineering Applications of Artificial Intelligence 26 (2013) 1282–1290
Subject: تولید
Category: مقاله مجله
Release Date: 2013
No of Pages: 9
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 

کرمانشاه گشت - اولین سامانه جامع گردشگری استان کرمانشاه