شما هنوز به سایت وارد نشده اید.
جمعه 02 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 10,164
بازدید دیروز: 28,942
بازدید کل: 157,611,536
کاربران عضو: 0
کاربران مهمان: 445
کاربران حاضر: 445
Automaton based on fuzzy clustering methods for monitoring industrial processes
Abstract:

Fuzzy clustering allows finding classes through the historical data in order to associate them with functional states useful to represent the complex industrial processes behavior. By means of classes, an automaton can be established that determines the current and the next connections of functional states of a process. When fuzzy clustering is used, the connections in the historical data are considered but it does not find other important connections. To solve this limitation, a new method to seek the most important connections among functional states is proposed. Initially, the approach defines an initial transition degrees matrix, where all connections are taken into account. Through a proposed update step, the most important connections are obtained, which they describe the real behavior of a process. In addition, a new distance criterion is defined to improve the update step. The final transition degrees matrix is used to construct a fuzzy automaton that it is validated by human operator’s experience. The approach was tested in a steam generator process. Applying three fuzzy clustering algorithms in case of study, the proposed method finds the same transition matrix. The new connections were validated by the human operator

Keywords: Fuzzy automaton Fuzzy clusteringmethod Hebbian functions
Author(s): .
Source: Engineering Applications of Artificial Intelligence 26 (2013) 1211–1220
Subject: تولید
Category: مقاله مجله
Release Date: 2013
No of Pages: 10
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.