شما هنوز به سایت وارد نشده اید.
شنبه 03 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 19,365
بازدید دیروز: 52,631
بازدید کل: 157,673,368
کاربران عضو: 0
کاربران مهمان: 65
کاربران حاضر: 65
Adaptive neural complementary sliding-mode control via functional-linked wavelet neural network
Abstract:

Chaos control can be applied in the vast areas of physics and engineering systems, but the parameters of chaotic system are inevitably perturbed by external inartificial factors and cannot be exactly known. This paper proposes an adaptive neural complementary sliding-mode control (ANCSC) system, which is composed of a neural controller and a robust compensator, for a chaotic system. The neural controller uses a functional-linked wavelet neural network (FWNN) to approximate an ideal complementary sliding-mode controller. Since the output weights of FWNN are equipped with a functional-linked type form, the FWNN offers good learning accuracy. The robust compensator is designed to eliminate the effect of the approximation error introduced by the neural controller upon the system stability in the Lyapunov sense. Without requiring preliminary offline learning, the parameter learning algorithm can online tune the controller parameters of the proposed ANCSC system to ensure system stable. Finally, it shows by the simulation results that favorable control performance can be achieved for a chaotic system by the proposed ANCSC scheme

Keywords: Adaptive control Neural control Functional-linked neuralnetwork Wavelet neuralnetwork
Author(s): .
Source: Engineering Applications of Artificial Intelligence 26 (2013) 1221–1229
Subject: پیرامون مدیریت
Category: مقاله مجله
Release Date: 2013
No of Pages: 9
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.