شما هنوز به سایت وارد نشده اید.
شنبه 03 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 18,931
بازدید دیروز: 52,631
بازدید کل: 157,672,934
کاربران عضو: 0
کاربران مهمان: 82
کاربران حاضر: 82
Genetic programming based blind image deconvolution for surveillance systems
Abstract:

Image acquisition, segmentation, object detection and tracking are essential parts of surveillance systems. Usually, image filtering approaches are employed as preprocessing step to reduce the effect of motion or out-of-focus blur problem. In this paper, we propose genetic programming (GP) based blind- image deconvolution filter. A GP based numerical expression is developed for image restoration which optimally combines and exploits dependencies among features of the blurred image. In order to develop such function, first, a set of feature vectors is formed by considering a small neighborhood around each pixel. At second stage, the estimator is trained and developed through GP process that automatically selects and combines the useful feature information under a fitness criterion. The developed function is then applied to estimate the image pixel intensity of the degraded images. The performance of filter function is estimated using various degraded image sequences. Our comparative analysis highlight the effectiveness of GP based proposed filter

Keywords: Surveillance systems Deconvolution Image restoration Genetic programming Deblurring
Author(s): .
Source: Engineering Applications of Artificial Intelligence 26 (2013) 1115–1123
Subject: پیرامون مدیریت
Category: مقاله مجله
Release Date: 2013
No of Pages: 9
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.