شما هنوز به سایت وارد نشده اید.
یکشنبه 02 دی 1403
ورود به سایت
آمار سایت
بازدید امروز: 14,828
بازدید دیروز: 19,661
بازدید کل: 158,505,317
کاربران عضو: 1
کاربران مهمان: 96
کاربران حاضر: 97
Decentralized PID neural network control for five degree-of-freedom active magnetic bearing
Abstract:

A decentralized proportional–integral–derivative neural network (PIDNN) control scheme is proposed to regulate and stabilize a fully suspended five degree-of-freedom (DOF) active magnetic bearing (AMB) system which is composed of two radial AMBs (RAMBs) and one thrust AMB (TAMB). First, the structure and operating principles of the five-DOF AMB system are introduced. Then, the adopted differential driving mode (DDM) for the drive system of the AMB is analyzed. Moreover, due to the exact dynamic model of the five-DOF AMB system is vague, a decentralized PIDNN controller is proposed to control the five-axes of the rotor simultaneously in order to confront the uncertainties including inherent nonlinearities and external disturbances effectively. Furthermore, the connective weights of the PIDNN are trained on-line and the convergence analysis of the regulating error is provided using a discrete- type Lyapunov function. Based on the decentralized concepts, the computational burden is reduced and the controller design is simplified. Finally, the experimental results show that the proposed control scheme provides good control performances and robustness for controlling the fully suspended five- DOF AMB system in different operating conditions.

Keywords: Active magneticbearing PID neuralnetwork Decentralized control Gradient descentmethod
Author(s): .
Source: Engineering Applications of Artificial Intelligence 26 (2013) 962–973
Subject: فناوری اطلاعات
Category: مقاله مجله
Release Date: 2013
No of Pages: 12
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 

کرمانشاه گشت - اولین سامانه جامع گردشگری استان کرمانشاه