شما هنوز به سایت وارد نشده اید.
دوشنبه 24 دی 1403
ورود به سایت
آمار سایت
بازدید امروز: 36,765
بازدید دیروز: 23,302
بازدید کل: 159,062,659
کاربران عضو: 0
کاربران مهمان: 67
کاربران حاضر: 67
A genetic algorithm model based on artificial neural network for prediction of the axillary lymph node status in breast cancer
Abstract:

Axillary Lymph Node (ALN) status is an extremely important factor to assess metastatic breast cancer. Surgical operations which may be necessary and cause some adverse effects are performed in determination ALN status. The purpose of this study is to predict ALN status by means of selecting breast cancer patient’s basic clinical and histological feature(s) that can be obtained in each hospital. 270 breast cancer patients’ data are collected from Ankara Numune Educational and Research Hospital and Ankara Oncology Educational and Research Hospital. These are classified using back propagation MultiLayer Perceptron (MLP), Logistic Regression (LR) and Genetic Algorithm (GA) based MLP models. Receiver Operating Characteristics (ROC) such as sensitivity, specificity, accuracy and area under of ROC (AUC) and regression are used to evaluate performances of the developed models. It is concluded from LR and GA based MLP, that menopause status and lymphatic invasion are the most significant features for determining ALN status. GA provides to select best features as MLP inputs. It also optimizes the weights of backpropagation algorithm in MLP. The values of regression and accuracy of the GA based MLP with 9 features (numerical age, categorical age, menopause status, tumor size, tumor type, tumor location, T staging, tumor grade and lymphatic invasion) are found as 0.96 and 98.0% with respectively. According to results, proposed GA based MLP classifier can be used to predict the ALN status of breast cancer without surgical operations

Keywords: Axillary lymphnode Breast cancer Genetic algorithm Multilayer perceptron Logistic regression
Author(s): .
Source: Engineering Applications of Artificial Intelligence 26 (2013) 945–950
Subject: تصمیم گیری
Category: مقاله مجله
Release Date: 2013
No of Pages: 6
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 

کرمانشاه گشت - اولین سامانه جامع گردشگری استان کرمانشاه