Frequency response masking (FRM) technique along with the Canonic Signed Digit (CSD) representa- tion is a good alternative for the design of a computationally efficient, sharp transition width, high speed finite impulse response (FIR) filter. This paper proposes two novel approaches for the joint optimization of an FRM FIR digital filter in the CSD space. The first approach uses the recently emerged Artificial Bee Colony (ABC) algorithm and the second approach uses the Differential Evolution (DE) algorithm. In this paper, both the algorithms are modified in such a way that, they are suitable for the solution of the optimization problem posed, in which the search space consists of integers and the objective function is nonlinear. The optimization variables are encoded such that they permit the reduction in computational cost. The salient feature of the above approaches is the reduced computational complexity while obtaining good performance. Simulation results show that the ABC based design technique performs better than that using DE, which in turn outperforms the one using integer coded genetic algorithm (GA). The proposed optimization approaches can be extended to the solution of integer programming problems in other engineering disciplines also.