شما هنوز به سایت وارد نشده اید.
یکشنبه 04 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 15,115
بازدید دیروز: 26,897
بازدید کل: 157,696,015
کاربران عضو: 0
کاربران مهمان: 71
کاربران حاضر: 71
Co-evolutionary immuno-particle swarm optimization with penetrated hyper-mutation for distributed inventory replenishment
Abstract:

This article is betrothed to serve as a continuation of the emerging swarm techniques to solve supply chain problems. Our aim is to map some of the pressing research challenges contributed by the artificial intelligence community and to develop an improved algorithm: Co-evolutionary immuno-particle swarm optimisation with penetrated hyper-mutation (COIPSO-PHM). In this paper, we proposed a new algorithm which uses clonal selection approach in particle swarm optimisation by embedding co- evolutionary theory to solve the problem of inventory replenishment in distributed plant–warehouse– retailer system. Constraint handling is explicitly taken care by implanting augmented lagrangian concept. To demonstrate the efficiency of the algorithm, its performance are evaluated and compared on 10 benchmarked problems (made constrained problem via random initialisation in the infeasible zone) including functions with uni-modalities as well as multi-modalities. The result follows shows superior performance of the algorithm in every respect

Keywords: Artificial intelligence Penetrated hyper-mutation Clonal selection Inventory replenishment Augmented lagrangian Pre-mature convergence
Author(s): .
Source: Engineering Applications of Artificial Intelligence 25 (2012) 1628–1643
Subject: تولید
Category: مقاله مجله
Release Date: 2012
No of Pages: 16
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.