شما هنوز به سایت وارد نشده اید.
جمعه 02 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 29,123
بازدید دیروز: 28,942
بازدید کل: 157,630,495
کاربران عضو: 0
کاربران مهمان: 40
کاربران حاضر: 40
An Optimum-Path Forest framework for intrusion detection in computer networks
Abstract:

Intrusion detection systems that make use of artificial intelligence techniques in order to improve effectiveness have been actively pursued in the last decade. However, their complexity to learn new attacks has become very expensive, making them inviable for a real time retraining. In order to overcome such limitations, we have introduced a new pattern recognition technique called optimum- path forest (OPF) to this task. Our proposal is composed of three main contributions: to apply OPF for intrusion detection, to identify redundancy in some public datasets and also to perform feature selection over them. The experiments have been carried out on three datasets aiming to compare OPF against Support Vector Machines, Self Organizing Maps and a Bayesian classifier. We have showed that OPF has been the fastest classifier and the always one with the top results. Thus, it can be a suitable tool to detect intrusions on computer networks, as well as to allow the algorithm to learn new attacks faster than other techniques.

Keywords: Intrusion detection system Optimum-Path Forest Computer security Machine learning
Author(s): .
Source: Engineering Applications of Artificial Intelligence 25 (2012) 1226–1234
Subject: فناوری اطلاعات
Category: مقاله مجله
Release Date: 2012
No of Pages: 9
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.