شما هنوز به سایت وارد نشده اید.
دوشنبه 05 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 12,476
بازدید دیروز: 25,397
بازدید کل: 157,718,773
کاربران عضو: 0
کاربران مهمان: 113
کاربران حاضر: 113
A novel time-depended evolutionary fuzzy SVM inference model for estimating construction project at completion
Abstract:

Construction projects frequently face cost overruns during the construction phase. Thus, a proactive approach is essential for monitoring project costs and detection of potential problems. In construction management, Estimate at Completion (EAC) is an indicator for assisting project managers in identifying potential problems and developing appropriate responses. This study utilizes weighted Support Vector Machine (wSVM), fuzzy logic, and fast messy Genetic Algorithm (fmGA) to handle distinct character- istics in EAC prediction. The wSVM is employed as a supervised learning technique that can address the features of time series data. The fuzzy logic is aimed to enhance the model capability of approximate reasoning and to deal with uncertainty in EAC prediction. Moreover, fmGA is utilized to optimize model’s tuning parameters. Simulation results show that the new developed model has achieved a significant improvement in EAC forecasting

Keywords: Estimate at Completion Time series prediction Fuzzy logic Weighted Support Vector Machine Fast messy Genetic Algorithm
Author(s): .
Source: Engineering Applications of Artificial Intelligence 25 (2012) 744–752
Subject: مدیریت پروژه
Category: مقاله مجله
Release Date: 2012
No of Pages: 9
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.