شما هنوز به سایت وارد نشده اید.
جمعه 02 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 28,801
بازدید دیروز: 28,942
بازدید کل: 157,630,173
کاربران عضو: 0
کاربران مهمان: 79
کاربران حاضر: 79
Real time modelling of the dynamic mechanical behaviour of PEMFC thanks to neural networks
Abstract:

Modelling complex dynamic mechanical systems, such as PEMFC, without any physical models is a difficult challenge but it could allow the monitoring of endurance tests of fuel cell systems. Neural networks are recognised as powerful numerical tools for predicting complex and nonlinear dynamic behaviours. They require only data limited to experimental inputs and outputs but the choice of an adapted architecture is critical. This paper presents a method for defining a neural network architecture optimised for the fuel cell systems. The associated experimental conditions specifying the vibration tests to train and validate were defined. They consist of swept sinus as well as random excitation forces. The resulting simulations are presented and analysed

Keywords: Fuel cell Vibrations Neural networks Artificial intelligence
Author(s): .
Source: Engineering Applications of Artificial Intelligence 26 (2013) 706–713
Subject: فناوری اطلاعات
Category: مقاله مجله
Release Date: 2013
No of Pages: 8
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.