شما هنوز به سایت وارد نشده اید.
یکشنبه 04 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 12,821
بازدید دیروز: 26,897
بازدید کل: 157,693,721
کاربران عضو: 3
کاربران مهمان: 79
کاربران حاضر: 82
Kernel based nonlinear fuzzy regression model
Abstract:

Recent years have seen a surge of interest in extending statistical regression to fuzzy data. Most of the recent fuzzy regression models have undesirable performance when functional relationships are nonlinear. In this study, we propose a novel version of fuzzy regression model, called kernel based nonlinear fuzzy regression model, which deals with crisp inputs and fuzzy output, by introducing the strategy of kernel into fuzzy regression. The kernel based nonlinear fuzzy regression model is identified using fuzzy Expectation Maximization (EM) algorithm based maximum likelihood estimation strategy. Some experiments are designed to show its performance. The experimental results suggest that the proposed model is capable of dealing with the nonlinearity and has high prediction accuracy. Finally, the proposed model is used to monitor unmeasured parameter level of coal powder filling in ball mill in power plant. Driven by running data and expertise, a strategy is first proposed to construct fuzzy outputs, reflecting the possible values taken by the unmeasured parameter. With the engineering application, we then demonstrate the powerful performance of our model

Keywords: Nonlinear fuzzyregression Kernel Fuzzy EMalgorithm Maximum likelihoodestimation Unmeasured parameter Power plant
Author(s): .
Source: Engineering Applications of Artificial Intelligence 26 (2013) 724–738
Subject: پیرامون مدیریت
Category: مقاله مجله
Release Date: 2013
No of Pages: 15
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.