شما هنوز به سایت وارد نشده اید.
دوشنبه 05 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 12,820
بازدید دیروز: 25,397
بازدید کل: 157,719,117
کاربران عضو: 3
کاربران مهمان: 36
کاربران حاضر: 39
Bayesian Probabilistic Matrix Factorization with Social Relations and Item Contents for recommendation
Abstract:
Recommendation systems have received great attention for their commercial value in today's online business world. However, most recommendation systems encounter the data sparsity problem and the cold-start problem. To improve recommendation accuracy in this circumstance, additional sources of information about the users and items should be incorporated in recommendation systems. In this paper, we modify the model in Bayesian Probabilistic Matrix Factorization, and propose two recommendation approaches fusing social relations and item contents with user ratings in a novel way. The proposed approach is computationally efficient and can be applied to trust-aware or content-aware recommendation systems with very large dataset. Experimental results on three real world datasets show that our method gets more accurate recommendation results with faster converging speed than other matrix factorization based methods. We also verify our method in cold-start settings, and our method gets more accurate recommendation results than the compared approaches.
Keywords: Recommendation system Collaborative filtering Social network Item contents Matrix factorization Tags
Author(s): .
Source: Decision Support Systems 55 (2013) 838–850
Subject: تجارت الکترونیک
Category: مقاله مجله
Release Date: 2013
No of Pages: 13
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.