شما هنوز به سایت وارد نشده اید.
جمعه 02 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 24,814
بازدید دیروز: 20,937
بازدید کل: 157,597,244
کاربران عضو: 0
کاربران مهمان: 508
کاربران حاضر: 508
Artificial neural network based autoregressive modeling technique with application in voice activity detection
Abstract:

A new method of estimating the coefficients of an autoregressive (AR) model using real-valued neural network (RVNN) technique is presented in this paper. The coefficients of the AR model are obtained from the synaptic weights and adaptive coefficients of the activation function of a two layer RVNN while the number of neurons in the hidden layer is estimated from over-constrained system of equations. The performance of the proposed technique has been evaluated using sinusoidal data and recorded speech so as to examine the spectral resolution and line splitting as well as its ability to detect voiced and unvoiced data section from a recorded speech. Results obtained show that the method can accurately resolve closely related frequencies without experiencing spectral line splitting as well as identify the voice and unvoiced segments in a recorded speech

Keywords: Autoregressive model Real-valued neural network (RVNN) Unvoiced signals Voiced activity detection Voiced signals
Author(s): .
Source: Engineering ApplicationsofArtificialIntelligence25(2012)1265–1276
Subject: تصمیم گیری
Category: مقاله مجله
Release Date: 2012
No of Pages: 12
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.