شما هنوز به سایت وارد نشده اید.
یکشنبه 04 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 1,752
بازدید دیروز: 26,897
بازدید کل: 157,682,652
کاربران عضو: 1
کاربران مهمان: 79
کاربران حاضر: 80
Predicting web user behavior using learning-based ant colony optimization
Abstract:

An ant colony optimization-based algorithm to predict web usage patterns is presented. Our methodology incorporates multiple data sources, such as web content and structure, as well as web usage. The model is based on a continuous learning strategy based on previous usage in which artificial ants try to fit their sessions with real usage through the modification of a text preference vector. Subsequently, trained ants are released onto a new web graph and the new artificial sessions are compared with real sessions, previously captured via web log processing. The main results of this work are related to an effective prediction of the aggregated patterns of real usage, reaching approximately 80%. In the second place, this approach allows the obtaining of a quantitative representation of the keywords that influence the navigational sessions

Keywords: Ant colonyoptimization Web usagemining Multi-agent simulation Text preferences
Author(s): .
Source: Engineering Applications of Artificial Intelligence 25 (2012) 889–897
Subject: تجارت الکترونیک
Category: مقاله مجله
Release Date: 2012
No of Pages: 9
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.