شما هنوز به سایت وارد نشده اید.
جمعه 02 آذر 1403
ورود به سایت
آمار سایت
بازدید امروز: 28,599
بازدید دیروز: 28,942
بازدید کل: 157,629,971
کاربران عضو: 0
کاربران مهمان: 463
کاربران حاضر: 463
Multi-objective optimization with fuzzy measures and its application to flow-shop scheduling
Abstract:

Most of the research in multi-objective scheduling optimization uses the classical weighted arithmetic mean operator to aggregate the various optimization criteria. However, there are scheduling problems where criteria are considered interact and thus a different operator should be adopted. This paper is devoted to the search of Pareto-optimal solutions in a tri-criterion flow-shop scheduling problem (FSSP) considering the interactions among the objectives. A new hybrid meta-heuristic is proposed to solve the problem which combines a genetic algorithm (GA) for solutions evolution and a reduced variable neighborhood search (RVNS) technique for fast solution improvement. To deal with the interactions among the three criteria the discrete Choquet integral method is adopted as a means to aggregate the criteria in the fitness function of each individual solution. Experimental comparisons (over public available FSSP test instances) with five existing multi-objective evolutionary algorithms (including the well known SPEA2 and NSGAII algorithms as well as the recently published L-NSGA algorithm) showed a superior performance for the developed approach in terms of diversity and domination of solutions.

Keywords: Multi-criteria optimization Fuzzy integrals Pareto optimality Pareto dominance Population heuristics Variable neighborhoodsearch
Author(s): .
Source: Engineering Applications of Artificial Intelligence 25 (2012) 1381–1394
Subject: تولید
Category: مقاله مجله
Release Date: 2012
No of Pages: 14
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.