شما هنوز به سایت وارد نشده اید.
یکشنبه 02 دی 1403
ورود به سایت
آمار سایت
بازدید امروز: 14,694
بازدید دیروز: 19,661
بازدید کل: 158,505,183
کاربران عضو: 1
کاربران مهمان: 102
کاربران حاضر: 103
Identification of nonlinear systems with outliers using wavelet neural networks based on annealing dynamical learning algorithm
Abstract:

This paper presents an annealing dynamical learning algorithm (ADLA) to train wavelet neural networks (WNNs) for identifying nonlinear systems with outliers. In ADLA–WNNs, wavelet-based support vector regression (WSVR) is adopted to determine the initial translation and dilation of a wavelet kernel and the weights of WNNs due to the similarity between WSVR and WNNs. After initialization, ADLA with nonlinear time-varying learning rates is applied to train the WNNs. In the ADLA, the determination of the learning rates would be a key work for the trade-off between stability and speed of convergence. A computationally efficient optimization method, particle swarm optimiza- tion (PSO), is adopted to find the optimal learning rates to overcome the stagnation in the training procedure of WNNs. Due to the advantages of WSVR and ADLA (WSVR–ADLA), the WSVR-based ADLA–WNNs (WSVR–ADLA–WNNs) can robust against outliers and achieve the promising efficiency of system identifications. Three examples are simulated to confirm the performance of the proposed algorithm. From the simulated results, the feasibility and superiority of the proposed WSVR–ADLA– WNNs for identifying nonlinear systems with artificial outliers are verified.

Keywords: Wavelet support vector regression Annealing dynamical learning algorithm Particle swarm optimization Wavelet neural networks Outliers
Author(s): .
Source: Engineering Applications of Artificial Intelligence 25 (2012) 533–543
Subject: فناوری اطلاعات
Category: مقاله مجله
Release Date: 2012
No of Pages: 11
Price(Tomans): 0
بر اساس شرایط و ضوابط ارسال مقاله در سایت مدیر، این مطلب توسط یکی از نویسندگان ارسال گردیده است. در صورت مشاهده هرگونه تخلف، با تکمیل فرم گزارش تخلف حقوق مؤلفین مراتب را جهت پیگیری اطلاع دهید.
 

کرمانشاه گشت - اولین سامانه جامع گردشگری استان کرمانشاه